§ 238.407

(c) Unoccupied volumes of a power car or a trailer car designed to crush as part of the crash energy management design are not subject to the requirements of this section.

§238.407 Anti-climbing mechanism.

- (a) Each power car shall have an anti-climbing mechanism at its forward end capable of resisting an ultimate upward or downward static vertical force of 200,000 pounds. A power car constructed with a crash energy management design is permitted to crush in a controlled manner before the anti-climbing mechanism fully engages.
- (b) Interior train coupling points between units, including between units of articulated cars or other permanently joined units of cars, shall have an anticlimbing mechanism capable of resisting an upward or downward vertical force of 100,000 pounds without yielding.
- (c) The forward coupler of a power car shall be attached to the car body to resist a vertical downward force of 100,000 pounds for any horizontal position of the coupler without yielding.

§ 238.409 Forward end structures of power car cabs.

This section contains requirements for the forward end structure of the cab of a power car. (A conceptual implementation of this end structure is provided in Figure 1 to this subpart.)

- (a) Center collision post. The forward end structure shall have a full-height center collision post, or its structural equivalent, capable of withstanding the following:
- (1) A shear load of 500,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint;
- (2) A shear load of 150,000 pounds at its joint with the roof without exceeding the ultimate strength of the joint; and
- (3) A horizontal, longitudinal force of 300,000 pounds, applied at a point on level with the bottom of the windshield, without exceeding its ultimate strength.
- (b) Side collision posts. The forward end structure shall have two side collision posts, or their structural equiva-

lent, located at approximately the onethird points laterally, each capable of withstanding the following:

- (1) A shear load of 500,000 pounds at its joint with the underframe without exceeding the ultimate strength of the joint; and
- (2) A horizontal, longitudinal force of 300,000 pounds, applied at a point on level with the bottom of the windshield, without exceeding its ultimate strength.
- (c) Corner posts. The forward end structure shall have two full-height corner posts, or their structural equivalent, each capable of withstanding the following:
- (1) A horizontal, longitudinal or lateral shear load of 300,000 pounds at its joint with the underframe, without exceeding the ultimate strength of the joint:
- (2) A horizontal, lateral force of 100,000 pounds applied at a point 30 inches up from the underframe attachment, without exceeding the yield or the critical buckling stress; and
- (3) A horizontal, longitudinal or lateral shear load of 80,000 pounds at its joint with the roof, without exceeding the ultimate strength of the joint.
- (d) Skin. The skin covering the forward-facing end of each power car shall be:
- (1) Equivalent to a ½-inch steel plate with a 25,000 pounds-per-square-inch yield strength—material of a higher yield strength may be used to decrease the required thickness of the material provided at least an equivalent level of strength is maintained:
- (2) Securely attached to the end structure; and
- (3) Sealed to prevent the entry of fluids into the occupied cab area of the equipment. As used in paragraph (d), the term "skin" does not include forward-facing windows and doors.

§ 238.411 Rear end structures of power car cabs.

The rear end structure of the cab of a power car shall be designed to include the following elements, or their structural equivalent. (A conceptual implementation of this end structure is provided in Figure 2 to this subpart.)

(a) Corner posts. The rear end structure shall have two full-height corner